[1] Fowkes FG.Epidemiological research on peripheral vascular disease[J]. J Clin Epidemiol, 2001, 54(9): 863-868. [2] Aday AW, Matsushita K.Epidemiology of peripheral artery disease and polyvascular disease[J]. Circ Res, 2021, 128(12): 1818-1832. [3] Criqui MH, Matsushita K, Aboyans V, et al.Lower extremity peripheral artery disease: contemporary epidemiology, management gaps, and future directions: a scientific statement from the American Heart Association[J]. Circulation, 2021, 144(9): 171-191. [4] Paraskevas KI, Mikhailidis DP, Veith FJ, et al.Definition of best medical treatment in asymptomatic and symptomatic carotid artery stenosis[J]. Angiology, 2016, 67(5): 411-419. [5] Adepu S, Luo H, Ramakrishna S.Heparin-tagged PLA-PEG copolymer-encapsulated biochanin A-loaded (Mg/Al) LDH nanoparticles recommended for non-thrombogenic and anti-proliferative stent coating[J]. Int J Mol Sci, 2021, 22(11): 5433. [6] Asadi A, Hedayat D, Ghofrani S, et al.Modification of hexachiral unit cell to enhance auxetic stent performance[J]. Mech Adv Mater Struc, 2023, 30(7): 1470-1484. [7] Forrestal B, Case BC, Yerasi C, et al.Bioresorbable scaffolds: current technology and future perspectives[J]. Rambam Maimonides Med J, 2020, 11(2): e0016. [8] Dotter CT, Judkins MP.Transluminal treatment of arteriosclerotic obstruction: description of a new technique and preliminary report of its application[J]. Circulation, 1964, 30: 654-670. [9] Grüntzig A, Hopff H.Perkutane rekanalisation on chronischer arterieller mit einem neuen dilatationskatheter[J]. Dtsch Med Wochenscher, 1974, 99: 2502-252510. [10] Dotter CT.Cardiac catheterization and angiographic techniques of the future. background and current status of clinical catheter angiography[J]. Cesk Radiol, 1965, 19: 217-236. [11] Criado F.Brief history of angioplasty and stents: a tribute to the brilliant innovators that created the age of image-guided vascular intervention[J]. Ann Vasc Surg Brief Reports and Innovations,2023,3(2):100182. [12] Kapnisis K, Stylianou A, Kokkinidou D, et al.Multilevel assessment of stent-induced inflammation in the adjacent vascular tissue[J]. ACS Biomater Sci Eng, 2023, 9(8): 4747-4760. [13] Wang J, Jin X, Huang Y, et al.Endovascular stent-induced alterations in host artery mechanical environments and their roles in stent restenosis and late thrombosis[J]. Regen Biomater, 2018, 5(3): 177-187. [14] Okura H, Takagi T, Yoshida K.Therapies targeting inflammation after stent implantation[J]. Curr Vasc Pharmacol, 2013, 11(4): 399-406. [15] Byrne RA, Joner M, Kastrati A.Stent thrombosis and restenosis: what have we learned and where are we going? The Andreas Grüntzig Lecture ESC 2014[J]. Eur Heart J, 2015, 36(47): 3320-3331. [16] Yang X, Lu X, Li W, et al.Endovascular treatment for symptomatic stent failures in long-segment chronic total occlusion of femoropopliteal arteries[J]. J Vasc Surg, 2014, 60(2): 362-368. [17] Kuramitsu S, Sonoda S, Ando K, et al.Drug-eluting stent thrombosis: current and future perspectives[J]. Cardiovasc Interv Ther, 2021, 36(2): 158-168. [18] Lammer J.Commentary: bioresorbable drug-eluting scaffold for peripheral artery disease: the best of two worlds or unnecessary?[J]. J Endovasc Ther, 2020, 27(4): 623-625. [19] Wijns W.Late stent thrombosis after drug-eluting stent: seeing is understanding[J]. Circulation, 2009, 120(5): 364-365. [20] Aoki J, Tanabe K.Mechanisms of drug-eluting stent restenosis[J]. Cardiovasc Interv Ther, 2021, 36(1): 23-29. [21] Alfonso F, Coughlan JJ, Giacoppo D, et al.Management of in-stent restenosis[J]. EuroIntervention, 2022, 18(2): e103-123. [22] Giacoppo D, Mazzone PM, Capodanno D, et al.Current management of in-stent restenosis[J]. J Clin Med, 2024, 13(8): 2377. [23] Baird RN, Abbott WM.Pulsatile blood-flow in arterial grafts[J]. Lancet, 1976, 2(7992): 948-950. [24] Concannon J, Moerman KM, Hynes N, et al.Influence of shape-memory stent grafts on local aortic compliance[J]. Biomech Model Mechan, 2021, 20(6): 2373-2392. [25] Tai NR, Salacinski HJ, Edwards A, et al.Compliance properties of conduits used in vascular reconstruction[J]. Br J Surg, 2000, 87(11): 1516-1524. [26] Jeong Y, Yao Y, Yim EKF.Current understanding of intimal hyperplasia and effect of compliance in synthetic small diameter vascular grafts[J]. Biomater Sci, 2020, 8(16): 4383-4395. [27] Colombo A, Karvouni E.Biodegradable stents: "fulfilling the mission and stepping away"[J]. Circulation, 2000, 102(4): 371-373. [28] Toong DWY, Toh HW, Ng JCK, et al.Bioresorbable polymeric scaffold in cardiovascular applications[J]. Int J Mol Sci, 2020, 21(10): 3444. [29] Grabow N, Martin DP, Schmitz K, et al.Absorbable polymer stent technologies for vascular regeneration[J]. J Chem Technol Biotechnol, 2009, 85: 744-751. [30] Kwon D, Kim J, Kim D, et al.Biodegradable stent[J]. J Biomed Sci Eng, 2012, 5(4): 208-216. [31] Im SH, Jung Y, Kim SH.Current status and future direction of biodegradable metallic and polymeric vascular scaffolds for next-generation stents[J]. Acta Biomater, 2017, 60: 3-22. [32] Mueller PP, May T, Perz A, et al.Control of smooth muscle cell proliferation by ferrous iron[J]. Biomaterials, 2006, 27: 2193-2200. [33] Mostaed E, Sikora-Jasinska M, Drelich JW, et al.Zinc-based alloys for degradable vascular stent applications[J]. Acta Biomater, 2018, 71: 1-23. [34] Chen S, Du T, Zhang H, et al.Methods for improving the properties of zinc for the application of biodegradable vascular stents[J]. Biomater Adv, 2024, 156: 213693. [35] Pan K, Zhang W, Shi H, et al.Zinc Ion-crosslinked polycarbonate/heparin composite coatings for biodegradable Zn-alloy stent applications[J]. Colloids Surf B Biointerfaces, 2022, 218: 112725. [36] Koeckerling D, Raguindin PF, Kastrati L, et al.Endovascular revascularization strategies for aortoiliac and femoropopliteal artery disease: a meta-analysis[J]. Eur Heart J, 2023, 44(11): 935-950. [37] Laird JR, Singh GD.Leaving nothing behind: bioresorbable vascular scaffolds for femoropopliteal disease[J]. JACC Cardiovasc Interv, 2016, 9(11): 1188-1190. [38] Canfield J, Totary-Jain H.40 years of percutaneous coronary intervention: history and future directions[J]. J Pers Med, 2018, 8(4): 33. [39] Stone GW, Kereiakes DJ, Gori T, et al.5-year outcomes after bioresorbable coronary scaffolds implanted with improved technique[J]. J Am Coll Cardiol, 2023, 82(3): 183-195. [40] Miyashita K, Ninomiya K, Tobe A, et al.Long-term outcomes following bioresorbable vascular scaffolds[J]. Expert Rev Cardiovasc Ther, 2024, 22(8): 391-407. [41] Pinxterhuis TH, Ploumen EH, Zocca P, et al.Outcome of percutaneous coronary intervention using ultrathin-strut biodegradable polymer sirolimus-eluting versus thin-strut durable polymer zotarolimus-eluting stents in patients with comorbid peripheral arterial disease: a post-hoc analysis from two randomized trials[J]. Cardiovasc Diagn Ther, 2023, 13(4): 673-685. [42] Kum S, Ipema J, Chun-Yin DH, et al.Early and midterm experience with the absorb everolimus-eluting bioresorbable vascular scaffold in Asian patients with chronic limb-threatening ischemia: one-year clinical and imaging outcomes from the DISAPEAR Registry[J]. J Endovasc Ther, 2020, 27(4): 616-622. [43] Dia A, Venturini JM, Kalathiya R, et al.Single arm retrospective study of bioresorbable vascular scaffolds to treat patients with severe infrapopliteal arterial disease[J]. Catheter Cardiovasc Interv, 2019, 94(7): 1028-1033. [44] Dia A, Venturini JM, Kalathiya RJ, et al.Two-year follow-up of bioresorbable vascular scaffolds in severe infra-popliteal arterial disease[J]. Vascular, 2021, 29(3): 355-362. [45] Chu TM, Chan YC, Cheng SW.Evidence for treating peripheral arterial diseases with biodegradable scaffolds[J]. J Cardiovasc Surg (Torino), 2017, 58(1): 87-94. [46] Fan W, Tan J, Li L, et al.Efficacy and safety of Absorb everolimus-eluting bioresorbable vascular scaffold in peripheral artery disease: a single-arm meta-analysis[J]. J Endovasc Ther, 2023, 30(5): 651-663. [47] Zhang W, Gao X, Zhang H, et al.Maglev-fabricated long and biodegradable stent for interventional treatment of peripheral vessels[J]. Nat Commun, 2024, 15(1): 7903. [48] Liu XN, Qu CJ, Zhang YB, et al.A novel sirolimus-eluting biodegradable magnesium-based alloy scaffold: six-month results In porcine peripheral arteries[J]. Clin Invest Med,2021,44(1):e28-37. [49] Melnick G, Ferrone M, Cheng Y, et al.Long-term performance and biocompatibility of a novel bioresorbable scaffold for peripheral arteries: a three-year pilot study in Yucatan miniswine[J]. Catheter Cardiovasc Interv, 2020, 95(7): 1277-1284. [50] Varcoe RL, Parikh SA, DeRubertis BG, et al. Evaluation of an infrapopliteal drug-eluting resorbable scaffold: design methodology for the LIFE-BTK randomized controlled trial[J]. J Soc Cardiovasc Angiogr Interv, 2023, 2(4): 100964. [51] Varcoe RL, DeRubertis BG, Kolluri R, et al. Drug-eluting resorbable scaffold versus angioplasty for infrapopliteal artery disease[J]. N Engl J Med, 2024, 390(1): 9-19. [52] Wang X, Zhang Y, Shen P, et al.Preparation of 4D printed peripheral vascular stent and its degradation behavior under fluid shear stress after deployment[J]. Biomater Sci, 2022, 10(9): 2302-2314. [53] Glushchenko L, Hubbard B, Sedush N, et al.Novel self-expanding shape-memory bioresorbable peripheral stent displays efficient delivery, accelerated resorption, and low luminal loss in a porcine model[J]. J Endovasc Ther, 2023, 30(1): 140-147. [54] Gutowski P, Gage SM, Guziewicz M, et al.Arterial reconstruction with human bioengineered acellular blood vessels in patients with peripheral arterial disease[J]. J Vasc Surg, 2020, 72(4): 1247-1258. [55] Claessen BE, Feldman DN.In-stent restenosis: is the future bioresorbable?[J]. JACC Cardiovasc Interv, 2024, 17(15): 1837-1839. [56] Liu D, Yang K, Chen S.Development and future trends of protective strategies for magnesium alloy vascular stents[J]. Materials (Basel), 2023, 17(1): 68. |