[1] Bradley WE, Timm GW, Gallagher JM.New method for continuous measurement of nocturnal penile tumescence and rigidity[J]. Urology, 1985, 26(1): 4-9. [2] Lacono F,Giannella R,Somma P,et al.Histological alterations in cavernous tissue after radical prostatectomy[J].J Urol, 2005, 173(5): 1673-1676 [3] Bannowsky A,Schulze H,van der Horst C,et al.Nocturnal tumescence:a parameter for postoperative erectile integrity after nerve sparing radical prostatectomy[J].J Urol,2006,175(6):2214-2217. [4] Soleimani M, Hosseini S, Aliasgari M, et al.Erectile dysfunction after prostatectomy: an evaluation of the risk factors[J]. Scand J Urol Nephrol, 2009, 3(4): 277-281. [5] Peng J, Zhang Z, Gao, B, et al.Effect of daily sildenafil on patients with absent nocturnal erections due to pelvic fracture urethral disruption: a single-centre experience[J]. Andrologia,2016, 48(10): 1120-1124. [6] Poulakis V, Ferakis N, Witzsch U, et al.Erectile dysfunction after transurethral prostatectomy for lower urinary tract symptoms: results from a center with over 500 patients[J].Asian J Androl, 2006, 8(1): 69-74. [7] Mathers MJ, Klotz T, Alexander S, et al.Long-term treatment of erectile dysfunction with a phosphodiesterase-5 inhibitor and dose optimization based on nocturnal penile tumescence[J]. BJU Int, 2008, 101(9): 1129-1134. [8] Feng C, Xu Y, Yu J, et al.Risk factors for erectile dysfunction in patients with urethral strictures secondary to blunt trauma[J]. J Sex Med, 2008, 5(11): 2656-2661. [9] Liu J, Wang J, Zhang Z, et al.Fully stretchable active-matrix organic light-emitting electrochemical cell array[J]. Nat Commun, 2020, 11(1): 8907. [10] Liang Y, Xiao P, Wang S, et al.Scalable fabrication of free-standing, stretchable CNTTPE ultrathin composite films for skin adhesive epidermal electronics[J]. J Mater Chem C, 2018, 6(25): 6666-6671. [11] Xiao P, Gu J, Wan C, et al.Ultrafast formation of free-standing 2D carbon nanotube thin films through capillary force driving compression on an air-water interface[J]. Chem Mater, 2016, 28(19): 7125-7133. [12] Lin S, Zhao X, Jiang X, et al.Highly stretchable, adaptable,and durable strain sensing based on a bioinspired dynamically cross-linked graphene polymer composite[J]. Small, 2019, 15(1): 1900848. [13] Li Z, Shan Y,Wang X,et al.Self-healing flexible sensor based on metal-ligand coordination[J].Chem Eng J,2020,394(1):124932. [14] Cao J, Zhang X, Lu C, et al.Self-healing sensors based on dual noncovalent network elastomer for human motion monitoring[J]. Macromol Rapid Commun, 2017, 38(23):1700406. [15] Zhang L, Li H, Lai X, et al.Three-dimensional binary-conductive-network silver nanowires@thiolated graphene foam-based room-temperature self-healable strain sensor for human motion detection[J].ACS Appl Mater Interfaces,2020,12(39): 44360-44370. [16] Ai Y,Lou Z,Chen S,et al.All rGO-on-PVDF-nanofibers based self-powered electronic skins[J].Nano Energy,2017,35(1):121-127. [17] Fan FR, Tian ZQ, Lin Wang Z.Flexible triboelectric generator[J]. Nano Energy, 2012, 1(2): 328-334. [18] Guo H, Wan J, Wu H, et al.Self-powered multifunctional electronic skin for a smart anti-counterfeiting[J]. ACS Appl Mater Interfaces, 2020, 12(19): 22357-22364. [19] Fan FR, Lin L, Zhu G, et al.Transparent triboelectric nanogenerators and self-powered pressure sensors based on micropatterned plastic films[J]. Nano Lett, 2012, 12(6):3109-3114. [20] Zhang Q, Niu S, Wang L, et al.An elastic autonomous self-healing capacitive sensor based on a dynamic dual crosslinked chemical system[J]. Adv Mater, 2018, 30(33): 1801435. [21] Zhang Y, Ellingford C, Zhang R, et al.Electrical and mechanical self-healing in high-performance dielectric elastomer actuator materials[J]. Adv Funct Mater, 2019, 29(15): 1808431. [22] Guo Y, Gao S, Yue W, et al.Anodized aluminum oxide-assisted low-cost flexible capacitive pressure sensors based on double-sided nanopillars by a facile fabrication method[J].ACS Appl Mater Interfaces, 2019, 11(51): 48594-48603. [23] Duan L, Lai JC, Li CH, et al.A dielectric elastomer actuator that can self-heal integrally[J]. ACS Appl Mater Interfaces, 2020, 12(39): 44137-44146. [24] Yang Y, Zhao Y, Liu J, et al.Flexible and transparent high-dielectric-constant polymer films based on molecular ferroelectric-modified poly(vinyl alcohol)[J]. ACS Materials Lett, 2020, 2(5): 453-460. [25] Mannsfeld SC, Tee BC, Stoltenberg RM, et al.Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers[J]. Nat Mater, 2010, 9(10): 859-864. [26] Mishra RB, El-Atab N, Hussain AM, et al.Recent progress on flexible capacitive pressure sensors:from design and materials to applications[J].Adv Mater Technol, 2021, 6(4): 2001023. [27] Shi Y, Lü X, Zhao J, et al.Flexible capacitive pressure sensor based on microstructuredcompositedielectric layer for broad linear range pressure sensing applications[J]. Micromachines, 2022, 13(2): 223. [28] Yao S, Zhu Y.Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires[J].Nanoscale, 2014, 6(1): 2345-2352. [29] 王荣忠,高秋英,王得军.基于最小二乘法的曲线拟合及其简化算法[J]. 传感器世界,2021,27(10):8-25. [30] 杜安通,丁能,耿英楠,等.基于最小二乘法的曲线拟合在下颌截骨术中的应用[J]. 中华整形外科杂志,2023,39(9):974-983. [31] Tang X, Wu C, Gan L, et al.Multilevel micro stuctured flexible pressure sensors with ultrahigh sensitivity and ultrawide pressure range for versatile electronic skins[J]. Small, 2019, 15(10): 1804559-1804559. [32] Wang Z, Wang S, Zeng J, et al.High sensitivity, wearable piezoresistive pressure sensors based on irregular microhump structures and its applications in body motion sensing[J].Small, 2016, 12(28): 3827-3836. [33] Park J, Lee Y, Hong J, et al.Giant tunneling piezoresistance of composite elastomers with interlocked microdome arrays for ultrasensitive and multimodal electronic skins[J]. ACS Nano, 2014, 8(5): 4689-4697. |