[1] Augustine J.Kidney transplant: new opportunities and challenges[J]. Cleve Clin J Med, 2018, 85(2): 138-144. [2] Johnstone RM, Bianchini A, Teng K.Reticulocyte maturation and exosome release: transferrin receptor containing exosomes shows multiple plasma membrane functions[J]. Blood, 1989,74(5): 1844-1851. [3] Stoorvogel W, Kleijmeer MJ, Geuze HJ, et al.The biogenesis and functions of exosomes[J]. Traffic, 2002, 3(5): 321-330. [4] Staals RH, Pruijn GJ.The human exosome and disease[J]. Adv Exp Med Biol, 2011, 702(33): 132-142. [5] Menjivar NG, Oropallo J, Gebremedhn S, et al.MicroRNA nano-shuttles: engineering extracellular vesicles as a cutting-edge biotechnology platform for clinical use in therapeutics[J]. Biol Proced Online, 2024, 26(1): 14. [6] Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes[J]. Science, 2020, 367(6478): 69-77. [7] Menon MC, Murphy B, Heeger PS.Moving biomarkers toward clinical implementation in kidney transplantation[J]. J Am Soc Nephrol, 2017, 28(3): 735-747. [8] Gonzalez-Nolasco B, Wang M, Prunevieille A, et al.Emerging role of exosomes in allorecognition and allograft rejection[J]. Curr Opin Organ Transplant, 2018, 23(1): 22-27. [9] Lim JH, Lee CH, Kim KY, et al.Novel urinary exosomal biomarkers of acute T cell-mediated rejection in kidney transplant recipients: a cross-sectional study[J]. PLoS One, 2018, 13(9): e204204. [10] Park J, Lin HY, Assaker JP, et al.Integrated kidney exosome analysis for the detection of kidney transplant rejection[J]. ACS Nano, 2017, 11(11): 11041-11046. [11] Chancharoenthana W, Traitanon O, Leelahavanichkul A, et al.Molecular immune monitoring in kidney transplant rejection: a state-of-the-art review[J]. Front Immunol, 2023,14(14): 117-136. [12] Cuadrado-Payán E, Ramírez-Bajo MJ, Bañón-Maneus E, et al.Physiopathological role of extracellular vesicles in alloimmunity and kidney transplantation and their use as biomarkers[J]. Front Immunol, 2023, 14(14): 108-116. [13] Romero-García N, Huete-Acevedo J, Mas-Bargues C, et al.Extracellular vesicles: the tuture of diagnosis in solid organ transplantation?[J]. Int J Mol Sci, 2023, 24(6): 1-21. [14] Zhang H, Huang E, Kahwaji J, et al.Plasma exosomes from HLA-sensitized didney transplant recipients contain mRNA transcripts which predict development of antibody-mediated rejection[J]. Transplantation, 2017, 101(10): 2419-2428. [15] Sharma M, Ravichandran R, Bansal S, et al.Tissue-associated self-antigens containing exosomes: role in allograft rejection[J]. Hum Immunol, 2018, 79(9): 653-658. [16] El Fekih R, Hurley J, Tadigotla V, et al.Discovery and validation of a urinary exosome mRNA signature for the diagnosis of human kidney transplant rejection[J]. J Am Soc Nephrol, 2021, 32(4): 994-1004. [17] Anglicheau D, Sharma VK, Ding R, et al.MicroRNA expression profiles predictive of human renal allograft status[J]. Proc Natl Acad Sci U S A, 2009, 106(13): 5330-5335. [18] Millán O, Budde K, Sommerer C, et al.Urinary miR-155-5p and CXCL10 as prognostic and predictive biomarkers of rejection, graft outcome and treatment response in kidney transplantation[J]. Br J Clin Pharmacol, 2017, 83(12): 2636-2650. [19] Quintairos L, Colom H, Millán O, et al.Early prognostic performance of miR155-5p monitoring for the risk of rejection: logistic regression with a population pharmacokinetic approach in adult kidney transplant patients[J]. PLoS One, 2021, 16(1): e245880. [20] Carraro A, De Gaspari P, Antoniello B, et al.New insights into pediatric kidney transplant rejection biomarkers: tissue, plasma and urine microRNAs compared to protocol biopsy histology[J]. Int J Mol Sci, 2024, 25(3):1911. [21] Jimenez-Coll V, Llorente S, Boix F, et al.Monitoring of serological, cellular and genomic biomarkers in transplantation, computational prediction models and role of cell-free DNA in transplant outcome[J]. Int J Mol Sci, 2023, 24(4): 3908. [22] Monteiro MB, Santos-Bezerra DP, Pelaes TS, et al.MicroRNAs 1915-3p, 2861, and 4532 are associated with long-term renal function decline in type 1 diabetes[J]. Clin Chem, 2019, 65(11): 1458-1459. [23] Chen Y, Han X, Sun Y, et al.A circulating exosomal microRNA panel as a novel biomarker for monitoring post-transplant renal graft function[J]. J Cell Mol Med, 2020, 24(20): 12154-12163. [24] Sevcikova A, Fridrichova I, Nikolaieva N, et al.Clinical significance of microRNAs in hematologic malignancies and hematopoietic stem cell transplantation[J]. Cancers (Basel), 2023, 15(9): 2658. [25] Ma A, Qi S, Wang Z, et al.Combined therapy of CD4CD25 regulatory T cells with low-dose sirolimus, but not calcineurin inhibitors, preserves suppressive function of regulatory T cells and prolongs allograft survival in mice. Int Immunopharmacol, 2009, 9(5): 553-563. [26] Pêche H, Renaudin K, Beriou G, et al.Induction of tolerance by exosomes and short-term immunosuppression in a fully MHC-mismatched rat cardiac allograft model[J]. Am J Transplant, 2006, 6(7): 1541-1550. [27] Bracamonte-Baran W, Florentin J, Zhou Y, et al.Modification of host dendritic cells by microchimerism-derived extracellular vesicles generates split tolerance[J]. Proc Natl Acad Sci U S A, 2017, 114(5): 1099-1104. [28] Pêche H, Heslan M, Usal C, et al.Presentation of donor major histocompatibility complex antigens by bone marrow dendritic cell-derived exosomes modulates allograft rejection[J]. Transplantation, 2003, 76(10): 1503-1510. [29] Ott LC, Cuenca AG.Innate immune cellular therapeutics in transplantation[J]. Front Transplant, 2023, 2(2): 1067512. [30] Du YM, Zhuansun YX, Chen R, et al.Mesenchymal stem cell exosomes promote immunosuppression of regulatory T cells in asthma[J]. Exp Cell Res, 2018, 363(1): 114-120. [31] Pang XL, Wang ZG, Liu L, et al.Immature dendritic cells derived exosomes promotes immune tolerance by regulating T cell differentiation in renal transplantation[J]. Aging (Albany NY), 2019, 11(20): 8911-8924. [32] Legaz I, Jimenez-Coll V, González-López R, et al.MicroRNAs as potential graft rejection or tolerance biomarkers and their dilemma in clinical routines behaving like devilish, angelic, or frightening elements[J]. Biomedicines, 2024, 12(1): 116. [33] Ono Y, Perez-Gutierrez A, Nakao T, et al.Graft-infiltrating PD-L1hi cross-dressed dendritic cells regulate antidonor T cell responses in mouse liver transplant tolerance[J]. Hepatology, 2018, 67(4): 1499-1515. [34] Benichou G, Wang M, Ahrens K, et al.Extracellular vesicles in allograft rejection and tolerance[J]. Cell Immunol, 2020,349(3): 104063. [35] Dimuccio V, Ranghino A, Praticò BL, et al.Urinary CD133+ extracellular vesicles are decreased in kidney transplanted patients with slow graft function and vascular damage[J]. PLoS One, 2014, 9(8): e104490. [36] Wang J, Li X, Wu X, et al.Expression profiling of exosomal miRNAs derived from the peripheral blood of kidney recipients with DGF using high-throughput sequencing[J]. Biomed Res Int, 2019, 2019(19): 1759697. [37] Esteva-Font C, Guillén-Gómez E, Diaz JM, et al.Renal sodium transporters are increased in urinary exosomes of cyclosporine-treated kidney transplant patients[J]. Am J Nephrol, 2014, 39(6): 528-535. [38] Capolongo G, Damiano S, Suzumoto Y, et al.Cyclosporin-induced hypertension is associated with the up-regulation of Na+-K+-2Cl- cotransporter (NKCC2)[J]. Nephrol Dial Transplant, 2024, 39(2): 297-304. [39] Rojas-Vega L, Jiménez-Vega AR, Bazúa-Valenti S, et al.Increased phosphorylation of the renal Na+-Cl- cotransporter in male kidney transplant recipient patients with hypertension: a prospective cohort[J]. Am J Physiol Renal Physiol, 2015, 309(10): F836-F842. [40] Curtis JJ.Hypertension and kidney transplantation[J]. Curr Opin Nephrol Hypertens, 1992, 1(1): 100-105. [41] Ginevri F, Azzi A, Botti G, et al. La nefropatia associata all'infezione da polyoma virus BK dopo trapianto renale [Polyomavirus BK-associated nephropathy after kidney transplantation][J]. G Ital Nefrol, 2006, 23(6): 575-584. Italian. [42] Martelli F, Wu Z, Delbue S, et al.BK polyomavirus microRNA levels in exosomes are modulated by non-coding control region activity and down-regulate viral replication when delivered to non-infected cells prior to infection[J]. Viruses, 2018, 10(9): 1-14. [43] 黄海燕,肖漓,毕丽丽,等.肾移植术后病毒感染对外泌体研究影响的初步探索[J]. 中华医学杂志,2018,98(3):171-175. [44] Kim MH, Lee YH, Seo JW, et al.Urinary exosomal viral microRNA as a marker of BK virus nephropathy in kidney transplant recipients[J]. PLoS One, 2017, 12(12): e190068. [45] Demey B, Bentz M, Descamps V, et al.BK polyomavirus bkv-miR-B1-5p: a stable micro-RNA to monitor active viral replication after kidney Transplantation[J]. Int J Mol Sci, 2022, 23(13): 7240. [46] Jung SW, Cho WH, Seo JW, et al.Urine exosomal bkv-miR-B1-5p and BK virus nephropathy in kidney transplant recipients[J]. J Infect Dis, 2023, 227(10): 1185-1193. [47] Alvarez S, Suazo C, Boltansky A, et al.Urinary exosomes as a source of kidney dysfunction biomarker in renal transplantation[J]. Transplant Proc, 2013, 45(10): 3719-3723. [48] Roest HP, Ooms L, Gillis A, et al.Cell-free microRNA miR-505-3p in graft preservation fluid is an independent predictor of delayed graft function after kidney transplantation[J]. Transplantation, 2019, 103(2): 329-335. [49] Li ZL, Lv LL, Tang TT, et al.HIF-1α inducing exosomal microRNA-23a expression mediates the cross-talk between tubular epithelial cells and macrophages in tubulointerstitial inflammation[J]. Kidney Int, 2019, 95(2): 388-404. [50] Schauerte C, Hübner A, Rong S, et al.Antagonism of profibrotic microRNA-21 improves outcome of murine chronic renal allograft dysfunction[J]. Kidney Int, 2017, 92(3):646-656. [51] Pipi E, Nayar S, Gardner DH, et al.Tertiary lymphoid structures: autoimmunity goes local[J]. Front Immunol, 2018,9(9): 1952. [52] Dieudé M, Bell C, Turgeon J, et al.The 20S proteasome core, active within apoptotic exosome-like vesicles, induces autoantibody production and accelerates rejection[J]. Sci Transl Med, 2015, 7(318): 318-200. [53] Dieudé M, Turgeon J, Karakeussian RA, et al.Extracellular vesicles derived from injured vascular tissue promote the formation of tertiary lymphoid structures in vascular allografts[J]. Am J Transplant, 2020, 20(3): 726-738. |